Ailong Ke, Cornell University

Profile photo of Ailong Ke, expert at Cornell University

Associate Professor Ithaca, New York AK425@cornell.edu Office: (607) 255-3945

Bio/Research

The use of small RNAs to regulate gene expression is ubiquitous in all living organisms including bacteria. In one remarkable instance, bacteria and archaea acquire resistance to invading foreign nucleic acids - such as conjugative plasmids, transposable elements and phages - by employing an RNA-...

Click to Expand >>

Bio/Research

The use of small RNAs to regulate gene expression is ubiquitous in all living organisms including bacteria. In one remarkable instance, bacteria and archaea acquire resistance to invading foreign nucleic acids - such as conjugative plasmids, transposable elements and phages - by employing an RNA-mediated defense mechanism. In this process, short fragments (~24 to 48 nucleotides) of the invading DNA are integrated in the genome as spacers between similarly sized clusters of regularly interspaced short palindromic repeats (CRISPRs). CRISPRs are a novel class of repetitive DNA that have been identified in 88% of the archaeal genomes and 39% of the bacterial genomes thus far sequenced, including important human pathogens such as Campylobacter jejuni, Clostridium botulinum, Listeria monocytogenes, Mycobacterium tuberculosis, Yersinia pestis, and enteropathogenic and enterohaemorrhagic Escherichia coli. Adjacent to the CRISPR repeats and spacers is a set of conserved CRISPR-associated (cas) genes that encode the Cas proteins. Owing to its widespread occurrence, the CRISPR defense system has attracted a great deal of attention.

Click to Shrink <<

Links