By harnessing the power of high-resolution scanning tunneling microscopy (STM) techniques in the study of novel materials, our group has had fundamental breakthroughs in understanding correlated electronic states, including high-Tc cuprate superconductors, heavy fermion systems, disordered semico...
By harnessing the power of high-resolution scanning tunneling microscopy (STM) techniques in the study of novel materials, our group has had fundamental breakthroughs in understanding correlated electronic states, including high-Tc cuprate superconductors, heavy fermion systems, disordered semiconductors, and topological quantum states. The kind of high-resolution spectroscopic information we obtain using these techniques, some of which have been specifically developed by our group, cannot be obtained from any other experimental methods and as such have had a significant impact on understanding novel electronic states in materials in general.