My research is in the area of soft condensed matter physics, which is the study of materials such as polymers, liquid crystals, surfactant solutions, colloidal suspensions, and biomaterials. The vast territory of these soft materials extends to plastics, pharmaceuticals, foodstuffs, textiles, pro...
My research is in the area of soft condensed matter physics, which is the study of materials such as polymers, liquid crystals, surfactant solutions, colloidal suspensions, and biomaterials. The vast territory of these soft materials extends to plastics, pharmaceuticals, foodstuffs, textiles, proteins, and blood. One of the most intriguing properties of these materials is their ability to self-assemble into complex organized structures. The self-assembly of periodic ordered structures has become the basis for developing new materials and devices, such as photonic band-gap materials, nanoporous membranes, nanowires and high-density information storage. The prediction, design and control of ordered or partially-ordered structures on the nanometer scale has become a central focus of the materials community and is an essential ingredient in the quest for ever more useful and inexpensive devices. Theorists support this endeavor by proposing new types of self-assembled structures and by developing methods of rational design. Furthermore, the self-assembly of soft materials provides a challenging fundamental problem in statistical mechanics.
Recently thermodynamic properties of block copolymer systems have become a paradigm for the study of self-assembly. Block copolymers are macromolecules composed of chemically different blocks tethered together, which spontaneously form a variety of ordered phases with domain sizes in nanometer range (1-100nm). Understanding the structures and phase transitions in block copolymers has been one of the most active research areas in polymer science in the past two decades. My research addresses two key questions, why certain ordered structures appear and how these structures behavior, using a variety of analytical and numerical techniques.