Thin film electronics made from emerging semiconductors have the capacity to be pervasive within our daily lives. Notably, some thin film devices have established themselves quite successfully, such as the OLED for flat panel displays. The goal of my research is to work on emerging device concept...
Thin film electronics made from emerging semiconductors have the capacity to be pervasive within our daily lives. Notably, some thin film devices have established themselves quite successfully, such as the OLED for flat panel displays. The goal of my research is to work on emerging device concepts and materials to help to realize the next generation of thin film electronic devices. Specifically, we try understand and leverage the unique electronic and optical properties of thin film materials, and in particular semiconductors. This includes the use of molecular and chalcogenide (e.g. oxide) semiconductors, as well as nanostructured quantized matter for emerging applications in solar cells, light emitting devices, and transistors. Studies that we conduct range from those on fundamental optical and electrical characterization to device physics and engineering to processing. Being interdisciplinary in nature, our work resides at the intersection of electrical engineering, materials science, physics, and chemistry, and we work with materials processed either in vacuum or via solution-phase. Our labs therefore consist of infrastructure for the preparation and testing of thin films and devices.