I am a mathematical / physical glaciologist whose main interest is the dynamics of ice sheets, such as those found in Antarctica and Greenland. My work focuses on fundamental aspects of ice sheet dynamics. Some of the questions that motivate my work are: what drove the retreat of the West Antarct...
I am a mathematical / physical glaciologist whose main interest is the dynamics of ice sheets, such as those found in Antarctica and Greenland. My work focuses on fundamental aspects of ice sheet dynamics. Some of the questions that motivate my work are: what drove the retreat of the West Antarctic Ice Sheet following the Last Glacial Maximum? How can large ice sheets such as the Laurentide disintegrate as quickly as they are known to have done? What caused the massive discharges of sediment-laden ice known as Heinrich events? What is the likely future behaviour of West Antarctica and Greenland?
In order to answer these questions, the flow behaviour of ice sheets must be understood. Ice sheets accumulate snow in their interior where surface elevations are high. They lose mass at their margins, either through melting or through calving. Ice is transported between these regions by ice flow, and generally, the faster the rate of flow, the greater the rate of mass loss. Much of my work has concentrated on processes that can speed up ice flow and can potentially contribute to the rapid and irreversible disintegration of ice sheets. My main contributions to date have been in ice stream and marine ice sheet dynamics, and in the role of meltwater drainage in speeding up ice sheet flow. Much of my work, especially more recently, has been done in collaboration with students, postdocs and collaborators at UBC, Simon Fraser University and elsewhere.