My lab is focused on the process of aging, which remains one of the fundamental mysteries of biology. While aging may appear to be simply an unfortunate consequence of living, recent genetic breakthroughs suggest that aging is a regulated process, rather than the result of cumulative cellular dam...
My lab is focused on the process of aging, which remains one of the fundamental mysteries of biology. While aging may appear to be simply an unfortunate consequence of living, recent genetic breakthroughs suggest that aging is a regulated process, rather than the result of cumulative cellular damage. Many chronic and degenerative disorders, such as diabetes, cancer, and neurodegenerative diseases develop in an age-related manner. Because more than 20% of U.S. citizens will be over the age of 65 by the year 2050, there is a growing need to better understand the mechanisms involved in aging and age-associated diseases.
The emergence of model systems to study aging and the development of whole-genome approaches is providing an unprecedented glimpse into the processes underlying aging. Our understanding of aging at the molecular level will progress from identifying these global regulators, to defining the genes that they control, to describing the biochemical events that carry out the business of keeping an organism's cells alive. The goal of my lab is to enrich our understanding of the molecular basis of aging process by first identifying the genes that are controlled by these global regulators and then elucidating the cell biological and biochemical mechanisms used by these genes to affect lifespan.