The Samuels lab studies how plant cells secrete their cell walls, both the polysaccharides and specialized cell wall components such as lipids and lignin. Our approach is to integrate cell biology with molecular biology and biochemistry to put cell wall biosynthesis and secretion into a cellular...
The Samuels lab studies how plant cells secrete their cell walls, both the polysaccharides and specialized cell wall components such as lipids and lignin. Our approach is to integrate cell biology with molecular biology and biochemistry to put cell wall biosynthesis and secretion into a cellular context. All plant growth, including agricultural and forestry production, is based on the organized assembly of plant cells into tissues, organs and whole plants.
The plant cell wall determines the shape of the cell and connects cells into tissues and higher order structures, thus plant growth depends on cell wall production. In addition, terrestrial plants have evolved specialized regions of cell walls, such as the plant cuticle and lignified cell walls that are essential for water retention and water conduction, respectively. Lignified cell walls, such as those found in vascular tissues like wood, make the wall strong and waterproof. The removal of lignin from the cellulose of the cell wall has been identified as a barrier to enzymatic degradation of cellulose feedstock for biofuels, so there is strong interest in understanding lignified secondary cell walls.