My current research objectives are threefold: (1) to construct higher resolution models of the earth's response to the melting of the continental ice masses of the last glaciations, (2) to integrate chemistry into simple heat and mass transfer models of aqueous fluid flow in the earth's crust to ...
My current research objectives are threefold: (1) to construct higher resolution models of the earth's response to the melting of the continental ice masses of the last glaciations, (2) to integrate chemistry into simple heat and mass transfer models of aqueous fluid flow in the earth's crust to understand the fundamental constraints (if any) on supplying in perpetuity 10.5 billion with the energy and mineral resources required for a European standard of living, and (3) to develop a methodology for using nanoparticles as non-diffusing tracers that can measure fluid bypass and enable new fluid management strategies. The higher resolution isostatic adjustment models will allow recent changes in the rate of sea level rise to be interpreted more broadly and confidently, while at the same time better constraining mantle viscosity, one of the most fundamental earth parameters. Integrating chemistry and fluid flow provides a fundamental basis for understanding hydrocarbon and mineral resources, and also for understanding chemical changes that attend some extraction methods and carbon sequestration strategies. Measuring fluid bypass with nanoparticles, if successful, could lead to entirely new methods of detecting and managing subsurface fluid flow.