Our group's research is focused at the intersection of mechanics and biology. We are interested in elucidating the underlying molecular mechanisms that give rise to the complex mechanical properties of cells, extracellular matrices, and tissues . Conversely, we are investigating how complex mecha...
Our group's research is focused at the intersection of mechanics and biology. We are interested in elucidating the underlying molecular mechanisms that give rise to the complex mechanical properties of cells, extracellular matrices, and tissues . Conversely, we are investigating how complex mechanical cues influence important biological processes such as cell division, differentiation, or cancer progression. Our approaches involve using force measurement instrumentation, such as atomic force microscopy, to exert and measure forces on materials and cells at the nanoscale, and the development of material systems for 3D cell culture that allow precise and independent manipulation of mechanical properties.