Paul Chirik, Princeton University

Profile Photo of Paul Chirik

Professor Princeton, New Jersey pchirik@princeton.edu Office: (609) 258-4130

Bio/Research

Catalysis is at the core of sustainable chemistry. Many catalytic processes, however, rely on elements that are expensive, in short supply or have a significant environmental footprint associated with their extraction and isolation. The Chirik group is exploring “modern alchemy” for sustainable c...

Click to Expand >>

Bio/Research

Catalysis is at the core of sustainable chemistry. Many catalytic processes, however, rely on elements that are expensive, in short supply or have a significant environmental footprint associated with their extraction and isolation. The Chirik group is exploring “modern alchemy” for sustainable chemistry – a concept defined as using ligand design to transmute the function of an earth abundant metal to mimic or ideally surpass the performance of more exotic precious elements.

Our approach is multidisciplinary, spanning the traditional areas of organic and inorganic chemistry. At the core of our work is understanding and manipulating electron flow in first row transition metal compounds. We integrate modern spectroscopic and theoretical methods to accomplish these objectives. In one limit, oxidation and reduction chemistry occurs cooperatively between the metal and the supporting ligand. This concept of “redox active” ligands has resulted in new base metal catalysts for the asymmetric hydrogenation of alkenes as well as the hydrosilylation and hydroboration of olefins.


Click to Shrink <<

Links