Randy Wayne, Cornell University

Profile photo of Randy Wayne, expert at Cornell University

Associate Professor Ithaca, New York row1@cornell.edu Office: (607) 255-8904

Bio/Research

Stanislaw Ulam said, “Ask not what physics can do for biology, ask what biology can do for physics.” Biophysics is populated by people who have moved from physics into biology. However, historically, biologists and physicians, including Thomas Young, Hermann von Helmholtz, Robert Brown, Robert Me...

Click to Expand >>

Bio/Research

Stanislaw Ulam said, “Ask not what physics can do for biology, ask what biology can do for physics.” Biophysics is populated by people who have moved from physics into biology. However, historically, biologists and physicians, including Thomas Young, Hermann von Helmholtz, Robert Brown, Robert Meyer and Adolf Fick have had a profound influence on physics and there is still room for a trained cell biologist to make an impact. This is because cells live in the world of neglected dimensions between the world of macroscopic physics and the world of microscopic physics. Studying physico-chemical processes in such a world has its advantages and its disadvantages. One disadvantage of working in this world of neglected dimensions is that it is not easy to assume that a given subset of physical laws can be neglected in order to model biological processes and solve the equations easily. On the other hand, one advantage of working in the world of neglected dimensions is that a cell biologist has the opportunity to look for fundamental laws that are applicable to microscopic systems as well as macroscopic systems and thus help to unify macrophysics and microphysics. Such laws could provide a parsimonious toolbox for modeling and solving a wide range of physico-chemical problems. Although cells and the particles within them do not travel anywhere near the speed of light, as a cell biologist, I have gained a perspective to suggest why charged particles do not travel faster than the speed of light. I have been working on a thought-provoking and testable hypothesis as an alternative to the theory of special relativity.

Click to Shrink <<

Links