Research is focused on the development of high-field magnetic resonance imaging (MRI) and spectroscopy techniques for early diagnosis of disease and monitoring of treatment response. We use primarily 3.0 Tesla and 7.0 Tesla human MRI scanners as well as a 9.4 Tesla small bore MRI scanner all at R...
Research is focused on the development of high-field magnetic resonance imaging (MRI) and spectroscopy techniques for early diagnosis of disease and monitoring of treatment response. We use primarily 3.0 Tesla and 7.0 Tesla human MRI scanners as well as a 9.4 Tesla small bore MRI scanner all at Robarts Research Institute. The group develops new methods for imaging structural and metabolic tissue changes, but also applies these new methods to the study of disease such as Alzheimer disease, stroke, and cancer. A major goal is to validate new imaging biomarkers of disease progression and build novel MRI tracers that highlight pathological aspects of a disease process. These studies involve a highly integrated team with expertise in physics, chemistry, cell biology, and medicine. Physiological and metabolic biomarkers of disease progression may have greater sensitivity to tissue damage than the imaging of structural changes.