Roberto Car, Princeton University

Profile photo of Roberto Car, expert at Princeton University

Professor Princeton, New Jersey rcar@princeton.edu Office: (609) 258-2534

Bio/Research

Our motivation is to understand the atomistic and the electronic structure and dynamics in materials. We use theoretical tools and numerical simulation to gain insight and predict physical and chemical processes. Our studies are often stimulated by experimental observations and may involve direct...

Click to Expand >>

Bio/Research

Our motivation is to understand the atomistic and the electronic structure and dynamics in materials. We use theoretical tools and numerical simulation to gain insight and predict physical and chemical processes. Our studies are often stimulated by experimental observations and may involve direct collaboration with experimental groups. Although basic science is the main goal of our research, our findings and computational methodologies have technological implications and can help the design of new materials and devices with selected properties. 



Our methodology is rooted in theoretical physics, and particularly in quantum and statistical mechanics. Among our simulation tools ab-initio molecular dynamics plays a particularly important role. This approach captures the interplay of atomic motion and chemical bond evolution in the context of electronic density functional theory (DFT).

The ab-initio molecular dynamics method, invented by Car and Parrinello in 1985, has been applied with remarkable success to a variety of problems in condensed matter and chemical physics, materials science, the geosciences, chemistry and biochemistry, and is now a standard tool for molecular simulation.
While the range of problems accessible to well established computational methodologies continues to expand following the extraordinary development of computers, novel theoretical and computational tools are still needed to solve key problems in materials physics and chemistry. In this context our research focuses at extending the sampling capability of molecular dynamics methods, at overcoming current limitations of density functional theory, at including nuclear quantum effects in molecular simulations, and at modeling electronic excitations in connection with spectroscopic and transport studies.


Click to Shrink <<

Links