Scientific computation for complex/multiscale systems modeling. Our group has established a systematic connection (which we call "equation-free" computation) between macroscopic, continuum numerical analysis and microscopic/atomistic/stochastic simulators (such as molecular dynamics, kinetic Mont...
Scientific computation for complex/multiscale systems modeling. Our group has established a systematic connection (which we call "equation-free" computation) between macroscopic, continuum numerical analysis and microscopic/atomistic/stochastic simulators (such as molecular dynamics, kinetic Monte Carlo, Brownian dynamics or agent-based simulators). Our framework circumvents the derivation of closed, macroscopic equations, and allows microscopic simulators to perform systems-level tasks directly. Applications range from the long-time dynamics and thermodynamics of peptide fragments to complex fluids (liquid crystal rheology, micelle formation), computational materials science, lattice gas models of surface reactions, chemotaxis, epidemiology and more. Beyond direct simulation, the approach can be used to accelerate tasks such as parametric/stability analysis, optimization and controller design. This work involves extensive collaboration with experts in the particular fields, many of them here at Princeton.